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Context

work anchored in two teams and one core facility @ INT:

Methods and Computational Anatomy
MECA, O. Coulon

Neural Bases of Communication
BANCO, P. Belin

Neuroinformatics and Information Technology
NIT, S. Takerkart, O. Coulon

...and a long-lasting collaboration with the machine
learning team, QARMA @ LIS
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Inter-individual differences: brain shape
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Inter-individual differences: brain activity
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Functional variability...

signal or noise?

should we ignore it? try to overcome it? to understand it?

our objectives:
overcoming variability (with better models)
characterizing variability (with other modalities)
understanding the links with behavior (with new methods)
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InterTVA

acquisition funded by a machine-learning ANR project

objective: designing a data set useful for both communities
(machine learning, neuroscience)

multi-modal data set!

neuroscience: neural substrate of speaker identification

machine learning: multi-modal machine learning
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Content

hi-res anatomy (T1, T2)
hi-quality diffusion MRI
resting state
fMRI: event-related voice localizer (1 run)
fMRI: speaker identification (4 runs)
fMRI: voice calibrator (1 run)
fMRI: natural conversation (1 run)

HCP-like acquisitions
1h45 of scanning, with a pause in the middle
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Speaker identification task

Virginia Aglieri’s PhD thesis
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Connectivity scans

connectivity allows predicting differences in
activation patterns

Tavor, Smith, and Jbabdi (2016). Task-free MRI predicts individual differences in

brain activity during task performance. Science 352, 213-216.

Saygin, Z.M., Osher, D.E., Koldewyn, K., Reynolds, G., Gabrieli, J.D.E., and

Saxe, R.R. (2011). Anatomical connectivity patterns predict face selectivity in the

fusiform gyrus. Nature Neuroscience 15, 321-327.
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Functional localizer and beyond

...towards function-based alignment

Hyper-alignment: Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O.,

Conroy, B.R., Gobbini, M.I., Hanke, M., and Ramadge, P.J. (2011). A Common,

High-Dimensional Model of the Representational Space in Human Ventral

Temporal Cortex. Neuron 72, 404-416.

Nenning, K.-H., Liu, H., Ghosh, S.S., Sabuncu, M.R., Schwartz, E., and Langs,

G. (2017). Diffeomorphic functional brain surface alignment: Functional demons.

NeuroImage.
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Design Efficiency

Henson R.N. (2015) Design Efficiency. In: Arthur W. Toga, editor. Brain Mapping:

An Encyclopedic Reference, vol. 1, pp. 489-494. Academic Press : Elsevier

Review of papers from Bucaras, Chawla, Friston, Hagberg
in 1999/2002
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Definition of the design efficiency

T-statistic: T (df ) = cβ√
c(X T X)−1cTσ2

Efficiency: e = 1
(c(X T X)−1cT )

vary X
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Choose the best Stimulus-Onset Asynchrony
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Find the perfect condition order
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Find an optimal condition order
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From raw to group normalized BOLD signal
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Coregistration through SBref
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Noise regressors

Motion regressors
6 motions regressors

ROI PCA
12 PCA components for white matter
12 PCA components for CSF
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Surfacic pre-processing
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Are our MRI tasks activating something ?

26 / 56



Outline

1 Intro: a study of variability

2 The InterTVA data set
Content
Design optimization
Processing pipeline(s)
Quality check
An open dataset

3 Overcoming variability
Structure as an invariant
Inter-subject learning

4 Explaining variability
Detecting individual voice patches
Characterizing voice patches

5 Linking differences in behavior and imaging
Standard univariate approaches
Going further...

27 / 56



Quality check (1/3)

Visual inspection
HCP pipeline
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Quality check (2/3)

ART: movement and artifacts control
Motion threshold: 0.5mm
Global signal change threshold: 3std
Exclusion criteria: more than 20% volumes are outliers
Exclusion of 1 subject

29 / 56



Quality check (3/3)

MRIQC
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Sharing data on OpenNeuro

Data of 40 subjects will be public soon (180 Go)
Anatomical: T1w + T2w
Voice Localizer
Voice Identification
Resting state
Diffusion

Online BIDS Validator:
http://bids-standard.github.io/bids-validator/

Dataset descriptor article in preparation (Scientific Data)
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Graphical representations of brain patterns

Takerkart et al, PlosOne 2014 (fMRI)
Takerkart et al, Medical Image Analysis 2017 (aMRI)

Takerkart et al, Graph-based Representations 2017 (dMRI)
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Within- vs. inter-subject learning

Qi Wang’s PhD thesis (with LIS)
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Group-level MVPA
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Variability in the temporal voice areas
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Towards voice patches in humans

Pernet, 2015

42 / 56



A detection method for individual voice patches
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Individual voice patches: results
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...using the anatomy

Link between depth and BOLD amplitude
(Bodin, Takerkart, Belin, Coulon. 2017)

Position of patches and sulci (Isaure Michaud’s M2)

Organization of the sulcal pits (position, patterns...)
Location of the pli de passage
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...using connectivity

connectivity fingerprint (Passingham, 2002)
"each cortical area has a unique pattern of cortico-cortical
connections"

...long-range connectivity (Saygin, 2011)

...short-range (e.g across banks of the STS)
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Standard approaches

massively univariate analyses (2 sample t-tests,
correlations)

one brain feature vs. the behavioral variable (categorical or
continuous)

Aglieri et al., Behavioral Research 2017
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Behavior - connectivity

Aglieri, Chaminade, Takerkart, Belin, NeuroImage 2018
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Expertise - activation patterns

our hypothesis: experts have more robust cortical
representations

... i.e more distinct activation patterns

Charles Dabard’s M2 (difference in left auditory cortex)
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Behavior - activation patterns

Aglieri, Cagna, Takerkart, Belin, (almost) submitted
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Learning multi-modal representations

Akrem Sellami’s postdoc (with LIS)
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THANKS!
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