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Context

work anchored in two teams and one core facility @ INT:

Methods and Computational Anatomy
MECA, O. Coulon

Neural Bases of Communication
BANCO, P. Belin

Neuroinformatics and Information Technology
NIT, S. Takerkart, O. Coulon

...and a long-lasting collaboration with the machine
learning team, QARMA @ LIS
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N
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Inter-individual differences: brain activity
_

average

individual subjects
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Functional variability...
N

O signal or noise?
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Functional variability...
N

O signal or noise?

O should we ignore it? try to overcome it? to understand it?
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Functional variability...

signal or noise?

should we ignore it? try to overcome it? to understand it?

our objectives:
overcoming variability (with better models)
characterizing variability (with other modalities)
understanding the links with behavior (with new methods)



InterTVA
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O acquisition funded by a machine-learning ANR project
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InterTVA

acquisition funded by a machine-learning ANR project

objective: designing a data set useful for both communities
(machine learning, neuroscience)
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InterTVA

acquisition funded by a machine-learning ANR project

objective: designing a data set useful for both communities
(machine learning, neuroscience)

multi-modal data set!
neuroscience: neural substrate of speaker identification

machine learning: multi-modal machine learning
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= Quality check
= An open dataset
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Content

hi-res anatomy (T1, T2)

hi-quality diffusion MRI

resting state

fMRI: event-related voice localizer (1 run)
fMRI: speaker identification (4 runs)
fMRI: voice calibrator (1 run)

fMRI: natural conversation (1 run)

HCP-like acquisitions
1h45 of scanning, with a pause in the middle
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Speaker identification task

Virginia Aglieri’'s PhD thesis

[ « Jeudi » } [ Response ] [ 181 ] [ « Pouvez » ] [ Response ] ... *36 trials
Max 5 sec [3-55s] Max 5 sec
Anne ~ Anne .
Betty "% Betty * %
Chloe Chloe
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Connectivity scans
_f
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Connectivity scans
_f

O connectivity allows predicting differences in
activation patterns
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Connectivity scans

connectivity allows predicting differences in
activation patterns

Tavor, Smith, and Jbabdi (2016). Task-free MRI predicts individual differences in
brain activity during task performance. Science 352, 213-216.

Saygin, Z.M., Osher, D.E., Koldewyn, K., Reynolds, G., Gabrieli, J.D.E., and
Saxe, R.R. (2011). Anatomical connectivity patterns predict face selectivity in the
fusiform gyrus. Nature Neuroscience 15, 321-327.
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Functional localizer and beyond
N
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Functional localizer and beyond
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O ...towards function-based alignment
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Functional localizer and beyond

...towards function-based alignment

Hyper-alignment: Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O.,
Conroy, B.R., Gobbini, M.I., Hanke, M., and Ramadge, P.J. (2011). A Common,
High-Dimensional Model of the Representational Space in Human Ventral
Temporal Cortex. Neuron 72, 404-416.

Nenning, K.-H., Liu, H., Ghosh, S.S., Sabuncu, M.R., Schwartz, E., and Langs,
G. (2017). Diffeomorphic functional brain surface alignment: Functional demons.

Neurolmage.
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Design Efficiency

Henson R.N. (2015) Design Efficiency. In: Arthur W. Toga, editor. Brain Mapping:

An Encyclopedic Reference, vol. 1, pp. 489-494. Academic Press : Elsevier

Review of papers from Bucaras, Chawla, Friston, Hagberg
in 1999/2002
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Definition of the design efficiency

|
General Linear Model
Observations  Design matrix Betas  Noise
B
y| = X . ¥+
Px1
Nx1 NxP Nx1
N = number of secans
P = number of features / regressors
O T-statistic: T(df) = o8

Ve(XTX)—1¢cTo2

O Efficiency: e = m
O vary X
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Choose the best Stimulus-Onset Asynchrony

Efficiency (a.u.)
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Find the perfect condition order
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Find an optimal condition order

scan number

scan number
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From

raw to group normalized BOLD signal

Motion

BOLD Images SBrefs
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Coregistration through SBref

Tlw
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Noise regressors
N

O Motion regressors
0 6 motions regressors

0 ROI PCA

7 12 PCA components for white matter
0 12 PCA components for CSF
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Surfacic pre-processing
_

BOLD Images SBrefs

Fieldmap Tiw + T2w
Native Space
- Coregistred to subject's T1w Compute VDM
— FSaverage space

Noise Filtering
Done with SPM12 (Matlab) Voxel Displacement Map
Done with Freesurfers

Realign & Unwarp QJ Realign & Unwarp. qJ I
!

Filtered T1w

Segmentation

Corrected SBrefs Tissue masks Bias corrected Tlw

Coregistration to T1w <—

ImCalc (€1 + €2 + ¢3) > 0.3
Motion Regressors. Corrected BOLD Images | Tlw Coregisti Brain mask
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Are our MRI tasks activating something ?

Localizer task

Voices vs. Non-voices (p < 0.001 FWE)

SPM{T

Identification task

38}

7:,? ﬁr,'

Localizer task
Classification Voice vs. Non-voice (p < 0.05 FWE)

Voices vs. Silence (p < 0.001 FWE)

I W

SPM{T

38}
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Quality check (1/3)

Visual inspection

HGP-pipeline
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Quality check (2/3)

|
0 ART: movement and artifacts control
Motion threshold: 0.5mm
Global signal change threshold: 3std

Exclusion criteria: more than 20% volumes are outliers
Exclusion of 1 subject
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Quality check (3/3)

o MRIQC

MRIQC: group bold report

Summary
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Sharing data on OpenNeuro

Data of 40 subjects will be public soon (180 Go)
Anatomical: T1w + T2w
Voice Localizer
Voice ldentification
Resting state
Diffusion
Online BIDS Validator:

http://bids-standard.github.io/bids-validator/
Dataset descriptor article in preparation (Scientific Data)
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Graphical representations of brain patterns
N
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Graphical representations of brain patterns
_
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Graphical representations of brain patterns
_

j Classification accuracy

Subject 1

‘\ﬂ & 70 W Vertexbased SYM  EEEN Graph based SVM
65 * *

Sub]ect 2 \ l

Subject N B

(=)
=3

Accu racy %)
ot
<

.

Left Right
Hemisphere

Takerkart et al, PlosOne 2014 (fMRI)
Takerkart et al, Medical Image Analysis 2017 (aMRI)
Takerkart et al, Graph-based Representations 2017 (dMRI)
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Within- vs. inter-subject learning
|
Qi Wang’s PhD thesis (with LIS)

Group-level Inter-subject searchlight
within-subject searchlight

[subj ect1 ] [subjeclz] . [subjecl 5] I[subj ect l]-- -[subj ect S—ll |[ subject S ]I
o o . + Lza\'e-one-mhject-om+
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y v y i v vy

[[acmacy T N s]] ﬁmacy 1) focouracy 2). (. s]]

S statistic maps S statistic maps

Statistical assessment
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Group-level MVPA
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Significant regien

== GLWSS-anly
- S .only
- tersection

Significant region

W GLWSS.onky
- 155 only
W intersection

12000

10000

8000

&000

2000

Voxels claimed significant

— GLWSS
— S
/___

-

4 6 8 1o 12
radius

Voxels claimed significant

— GLWSsS

—_— 55

4 6 8 10 12
radius

magnitude

magnitude
5

=

n
)

K
=

&

=]

5

5

&

oy

@

B

-
=4

Peak t value

— GLWSS
—_—

4 6 ] 10 12

radius
Peak t value

— GLWSS

—_— 55

\-

H H ] 10 12
radius

38/56



Outline

S I —
Intro: a study of variability

The InterTVA data set
Content
Design optimization
Processing pipeline(s)
Quality check
An open dataset

Overcoming variability
Structure as an invariant
Inter-subject learning

Explaining variability
m Detecting individual voice patches
m Characterizing voice patches

Linking differences in behavior and imaging
Standard univariate approaches
Going further...

39/56



Outline

S I —
Intro: a study of variability

The InterTVA data set
Content
Design optimization
Processing pipeline(s)
Quality check
An open dataset

Overcoming variability
Structure as an invariant
Inter-subject learning

Explaining variability
m Detecting individual voice patches
Characterizing voice patches

Linking differences in behavior and imaging
Standard univariate approaches
Going further...

40/56



Variability in the temporal voice areas
_

average

individual subjects
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Towards voice patches in humans

Pernet, 2015
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A detection method for individual voice patches

beta map
of trial 1

N xval splits

Cortical Searchlight

scores split1
scores split2 | Tsurf1
b
|| Ttests

on M<N random splits ) |
Repeated K times

betamap
of trial 143

of trial 144

scores splitN-1 | /

Thresholding
variable threshold

7< Npeaks < 13

scores split N

Full peak
set

Patch
localization
map
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Individual voice patches: results
_

LEFT GLM LEFT VOICE PATCHES RIGHT GLM  RIGHT VOICE PATCHES LEFT GLM LEFT VOICE PATCHES RIGHT GLM  RIGHT VOICE PATCHES

DO DO
DAEE DG
DAOE DOAOG
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_-—
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...using the anatomy
N
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...using the anatomy

O Link between depth and BOLD amplitude

(Bodin, Takerkart, Belin, Coulon. 2017)
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...using the anatomy

O Link between depth and BOLD amplitude

(Bodin, Takerkart, Belin, Coulon. 2017)

[ Position of patches and sulci (Isaure Michaud’'s M2)

LEFT aFVA
pars orbitalis of the IFG (BA 47)
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..using the anatomy

_ _ .
O Link between depth and BOLD amplitude

(Bodin, Takerkart, Belin, Coulon. 2017)

0 Position of patches and sulci (Isaure Michaud’'s M2)

LEFT aFVA
pars orbitalis of the IFG (BA 47)

0 Organization of the sulcal pits (position, patterns...)
O Location of the pli de passage
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...using connectivity
N
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...using connectivity

O connectivity fingerprint (Passingham, 2002)
O "each cortical area has a unique pattern of cortico-cortical

connections"

Efferents of area 14

45

1

24

Efferents of area 9

9 "

45 24
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..using connectivity

0 connectivity fingerprint (Passingham, 2002)

O "each cortical area has a unique pattern of cortico-cortical
connections”

Efferents of area 14 Efferents of area 9

45 24 45 24

...long-range connectivity (Saygin, 2011)
...short-range (e.g across banks of the STS)
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= Standard univariate approaches
= Going further...
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Standard approaches

4|
O massively univariate analyses (2 sample t-tests,
correlations)

[0 one brain feature vs. the behavioral variable (categorical or
continuous)

Voices recognition
300

Frequency
N
o
o

N
o
=]

40 60 80 100
Percent correct (%)

Aglieri et al., Behavioral Research 2017
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Behavior - connectivity
—
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D S < S |
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PC voices

Aglieri, Chaminade, Takerkart, Belin, Neurolmage 2018
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Expertise - activation patterns
N

O our hypothesis: experts have more robust cortical
representations
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Expertise - activation patterns
_

O our hypothesis: experts have more robust cortical
representations

O ... i.e more distinct activation patterns

Non-musicien Musicien

¢ A\ \
@“\} Voxeld ﬁyi Aﬁmu

O Charles Dabard’s M2 (difference in left auditory cortex)

Voxel
Voxel 2
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Behavior - activation patterns
—

1007

Behavioral scores(%)

A - -
5 40 45 50
Speaker classification accuracy(%)

Behavioral scores(%])

EIED w0
Speaker classification accuracy(%) Temporal pole

[R2=0.41 /
100} |

Behavioral scores(%)

30 3¢ 0
Speaker classification accuracy(%)

Aglieri, Cagna, Takerkart, Belin, (almost) submitted
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Learning multi-modal representations

I I ——
Akrem Sellami’s postdoc (with LIS)
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Learning multi-modal representations

|
Akrem Sellami’s postdoc (with LIS)
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http://www.int.univ-amu.fr
http://www.neuralbasesofcommunication.eu
http://www.meca-brain.org
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